Real-time analysis of amyloid fibril formation of alpha-synuclein using a fibrillation-state-specific fluorescent probe of JC-1.
نویسندگان
چکیده
alpha-Synuclein is a pathological component of PD (Parkinson's disease) by participating in Lewy body formation. JC-1 (5,5',6,6'-tetrachloro-1,1,3,3'-tetraethylbenzimidazolyl carbocyanine iodide) has been shown to interact with alpha-synuclein at the acidic C-terminal region with a K(d) of 2.6 microM. JC-1 can discriminated between the fibrillation states of alpha-synuclein (monomeric, oligomeric intermediate and fibrillar forms) by emitting the enhanced binding fluorescence of different colours at 590, 560 and 538 nm respectively with the common excitation at 490 nm. The fibrillation-state-specific interaction of JC-1 allowed us to perform real-time analyses of the alpha-synuclein fibrillation in the presence of iron as a fibrillation inducer, rifampicin as a fibrillation inhibitor, baicalein as a defibrillation agent and dequalinium as a protofibril inducer. In addition, various alpha-synuclein fibrils with different morphologies prepared with specific ligands such as metal ions, glutathione, eosin and lipids were monitored with their characteristic JC-1-binding fluorescence spectra. FRET (fluorescence resonance energy transfer) between thioflavin-T and JC-1 was also employed to specifically identify the amyloid fibrils of alpha-synuclein. Taken together, we have introduced JC-1 as a powerful and versatile probe to explore the molecular mechanism of the fibrillation process of alpha-synuclein in vitro. It could be also useful in high-throughput drug screening. The specific alpha-synuclein interaction of JC-1 would therefore contribute to our complete understanding of the molecular aetiology of PD and eventual development of diagnostic/therapeutic strategies for various alpha-synucleinopathies.
منابع مشابه
Partial Peptide of α-Synuclein Modified with Small-Molecule Inhibitors Specifically Inhibits Amyloid Fibrillation of α-Synuclein
We have previously reported that pyrroloquinoline quinone (PQQ) prevents the amyloid formation of α-synuclein, amyloid β(1-42) (Aβ(1-42)), and mouse prion protein. Moreover, PQQ-modified α-synuclein and a proteolytic fragment of the PQQ-modified α-synuclein are able to inhibit the amyloid formation of α-synuclein. Here, we identified the peptide sequences that play an important role as PQQ-mod...
متن کاملMechanism of amyloidogenesis: nucleation-dependent fibrillation versus double-concerted fibrillation.
Amyloidogenesis defines a condition in which a soluble and innocuous protein turns to insoluble protein aggregates known as amyloid fibrils. This protein suprastructure derived via chemically specific molecular self-assembly process has been commonly observed in various neurodegenerative disorders such as Alzheimer's, Parkinson's, and Prion diseases. Although the major culprit for the cellular ...
متن کاملEvaluation and Characterization of Free and Immobilized Acethylcholinesterase with Fluorescent Probe, Differential Scanning Calorimetry and Docking
Acetylcholinesterase (AChE) enzyme which catalyses the hydrolysis of choline esters, such as acetylcholine, is very important in nerve function. Previous structural studies showed the possible amyloid fibril formation on the AChE. Therefore it is important to understand interaction of ligands to prevent the formation of amyloid fibrils. The purpose of the present study was to char...
متن کاملمطالعه فرایند فیبریل زایی انسولین رگولارو مهار آن با استفاده از ترکیبات آروماتیک
Background: The flexible structure of proteins is one important factor in the formation of ordered aggregates (amyloid fibril). This is a major problem for therapeutic proteins such as insulin. Study on the induction and inhibition of insulin fibrillation process with specific compounds such as aromatic derivatives may provide useful information about means of stabilization of protein structure...
متن کاملGranular Assembly of α-Synuclein Leading to the Accelerated Amyloid Fibril Formation with Shear Stress
alpha-Synuclein participates in the Lewy body formation of Parkinson's disease. Elucidation of the underlying molecular mechanism of the amyloid fibril formation is crucial not only to develop a controlling strategy toward the disease, but also to apply the protein fibrils for future biotechnology. Discernable homogeneous granules of alpha-synuclein composed of approximately 11 monomers in aver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 418 2 شماره
صفحات -
تاریخ انتشار 2009